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Abstract. The quasiclassical generalised Moyal quantisation procedure is applied to the 
problem of quantum canonical invariance. Simple new formulae for the Moyal bracket 
corresponding to various correspondence rules are given, and are used to calculate the 
‘additional potential terms’ arising from a point canonical transformation made on a free 
Hamiltonian. The status of canonical transformations in other equivalent quantum phase 
space formulations is also reviewed. 

1. Introduction 

Canonical invariance is an important example of an anomalous symmetry-it plays a 
vital part in the Hamiltonian formulation of classical mechanics, but does not survive 
any standard ‘canonical’ quantisation procedure intact. This is most familiar in the 
context of the standard Dirac quantisation algorithm (where classical Poisson brackets 
are replaced by quantum commutators). The Groenwald-Van Hove theorem (Groen- 
wald 1946, Van Hove 1951) proves that this quantisation procedure cannot be fully 
implemented, even when the phase space is R’”. Consequently, the canonical invariance 
of the classical Poisson brackets does not carry over to the quantum commutators. 
This same problem arises, in other guises, in other phase space formulations of quantum 
theories. Gervais and Jevicki (1976) studied the effects of a point canonical transforma- 
tion in a phase space path integral and showed that the stochastic nature of the path 
integral is responsible for the loss of canonical invariance. This loss is signalled by 
the presence of ‘additional potential terms’ in the transformed Hamiltonian. 

In this paper I apply the methods of Moyal quantisation to the question of quantum 
canonical invariance. In this context, the loss of canonical invariance is easily under- 
stood as being due to the deformation of the classical Poisson bracket algebra. I also 
review, and clarify, various other manifestations of the loss of canonical invariance, 
giving an explicit four-way equivalence between the situation in the operator theory, 
the discretised path integral theory, the non-linear perturbative path integral theory 
and the Moyal approach. By bringing together results from these different methods 
one can show, for example, that the claim made in the literature (see, e.g., Gervais 
and Jevicki (1976) § 2) that ‘making a formal nonlinear point canonical transformation 
within a phase space path integral results in a different quantum theory’ must be 
re-evaluated. 

In 5 2 I discuss the operator ordering problem and then the generalised Moyal 
approach to quantisation, giving some new simple formulae for the Moyal bracket 
applicable to certain correspondence rules. In § 3 I discuss the above-mentioned 
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equivalent manifestations of the breaking of canonical invariance. In 0 4 I use the 
Moyal methods to calculate the ‘additional potential terms’ arising from a more general 
class of point canonical transformations. Finally, I conclude with some discussion 
concerning the extension of the Moyal ideas to more complicated phase space systems, 
and indeed to the canonical quantisation of field theories. 

2. Correspondence rules and Moyal quantisation 

For our purposes, the essential ingredients of classical mechanics are 
(i) the phase space S, the points of which represent the classical states; 
(ii) the algebra A of smooth functions on S, the elements of which represent the 

(iii) the Poisson bracket which gives A a Lie algebra structure 
physical observables; 

where w is the symplectic 2-form (= -dO where 0 is the Liouville form) on S, the 5’ 
are local coordinates on S, and f , g ~ A .  A canonical transformation is simply a 
diffeomorphism p of S which preserves the symplectic structure 

p * w  = w 

i.e. Poisson brackets are preserved. 
Dirac’s canonical quantisation prescription can be thought of as a mapping D from 

A into the space of operators on a Hilbert space H (to which the quantum states belong) 

D : f H f  

such that 

D(i): 

D(ii): D:1-1 

D : (af + p g )  H a?+ p i  
A 

D(iii): 

The replacement of Poisson brackets with operator commutators is an appealing idea 
and has had many well known successes, not least of which is the fact that it allows 
much of Hamilton’s formalism for mechanics to be generalised to quantum theories. 
However, it was shown many years ago by Van Hove (1951) and Groenwald (1946) 
that such a quantisation procedure cannot be applied to the whole classical algebra 
A (at least if the quantum representation is required to be irreducible). This may be 
easily understood in the conventional operator formalism of quantisation in which a 
‘correspondence rule’ Cl must be chosen so that we know (ynambiguously) how to 
order the non-commuting operators p  ̂ and 4 in the operator f ($, 4) corresponding to 
the classical function f ( p ,  9) .  But then, i f f ,  g and {f, g }  are all quantised according 
to the same correspondence rule 0, we find in general that 
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(see, e.g., Abraham and Marsden 1978, Guillemin and Sternberg 1984), which contra- 
dicts D(iii). Note that there is no problem if we restrictf and g to the basic observables 
p and q ;  the problems arise when f and g are more complicated functions of p and 
q. One special case of interest is when f and g are bilinear functions, corresponding 
to field theoretical currents in the infinite-dimensional case. 

Some approaches to quantisation (such as geometric quantisation) proceed by 
relaxing the requirement of irreducibility or the condition D(ii) (see, e.g., Abraham 
and Marsden (1982) and references therein). However, we will retain these require- 
ments, which means that D(iii) must be relaxed to 

1 
R:{f,g)"$j'g^l+O(h) 

where the precise form of the O( h )  'corrections' depends on the particular correspon- 
dence rule chosen. The generalised Moyal procedure discussed here provides an 
elegant way of computing these O( h )  'corrections' simply in terms of classical functions 
and partial derivatives. This procedure involves explicitly constructing a new classical 
Lie algebra (strictly, a deformation of the Poisson bracket algebra, with deformation 
parameter A )  which is isomorphic to the quantum Lie algebra of operators with the 
Dirac commutator ( l / ih ) [  , I .  To achieve this, we define a new R-dependent product 
*n (called the generalised Moyal product) for the algebra A. It is defined so that 

f * n  g = fl- ' (f i(f)R(g)) (2.3) 

for all f, g E A, where the product on the RHS is the usual multiplication of operators. 
This definition means that f *n g is that classical function which, when quantised 
according to the rule R,  gives the product of the R-quantised operators corresponding 
to the classical functions f and g. Note that the Moyal product is non-commutative, 
due to the non-commutativity of operator multiplication. Next we define the generalised 
Moyal bracket {{  , ))n to be 

for all f, g E A. 
The Moyal product *n is clearly associative (associativity being inherited from the 

associativity of operator multiplication), and so the commutator-style definition of the 
Moyal bracket ensures that {{ , satisfies the Jacobi identity: 

{if, {{g, h))n) ln  + {{g, { { A ,  f)ln)>n + { { h ,  {if, g1)nI)n = 0. 

Notice that, by construction, we have ensured that 

for all f, g E A. This means that fl now sets up an isomorphism between the quantum 
Lie algebra, with bracket being the commutator, and the quasiclassical Lie algebra 
resulting from equipping A with the Moyal bracket. Also note that, for any R,  

{{  9 ) In= { 9 ) P B + O ( h )  (2.6) 

where the O ( h )  terms can be computed wholly within the classical regime using the 
Moyal bracket. 



2324 G V Dunne 

The usual Moyal bracket (Moyal 1949, Bayen et al 1978) corresponds to the case 
where R is Weyl ordering, W: 

(2.7) A n - k  Am * k  
4 P 4 .  

k = O  

Then an explicit formula for the Moyal bracket is 

where is the bidifferential operator 

However, Weyl ordering is just one particular ordering rule-general correspon- 
dence rules have been studied in great detail in the literature (Argawal and Wolf 1970, 
Cohen 1966, Dowker 1976). Following Argawal and Wolf (1970) and Cohen (1966), 
we may characterise a large class of orderings by 

a:f(P, 4 ) 4 A  4) = J-{ d 5  d77 exP[i(%+477)lf(5, 77)W5, 77) (2.9) 

where f is the Fourier transform off; and the 'weight function' R( 5, 77) is a C" function 
from R2 to @, satisfying the following conditions: 

(i)  R(0, 7) =a((, 0) = 1; ensuring that SZ: q"*q"" and R: p n - h n ;  
(ii) a*([, 77) =a(-& -7) if R is a Hermitian ordering. 

The inverse R-' can be defined and is given by 

where 

@5,77) = [a(-(, -77)1-' exp(ti577). (2.10) 

Then, using the defining relation (2.3), the generalised Moyal product is (Bakas and 
Kakas 1987a) 

f * n  g = { d 5  d77 { dE'd77!f(5, 77) i (5 ' ,  77')6J(5,77; 5 ' 9  77') 

x exp{i[p*(5+5')+4(rl+ 77')Il 
where 

(2.11) 

Some examples of the more common correspondence rules and their associated R 
weight functions are 

Weyl 

standard 

as in (2.7); SZ = 1 

s : qmpn H $"$" 

N 5 ,  77) = exp(ti577) 

(2.12) 
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antistandard AS : q"p" -p*"i" (2 .13)  

W5,77) = exp(-fi577) 

w5, 7 7 )  = exp[t(t2+ T2)1 

normal N :  zmz*n-(a+)nam 

antinormal AN : zmz*" H a"( a + ) "  

(2 .14)  

(2 .15)  

Wt, 7 7 )  = exp[-i(t2+ v2)1 
where in the last two cases, z = ( l / a ) ( q + i p )  and z * = ( l / m ) ( q - i p ) .  

We now present a simple method for deriving more manageable formulae for the 
generalised Moyal product for 
these correspondence rules. Consider first of all the standard correspondence rule 
(2 .12) ,  and let 

and hence the generalised Moyal bracket {{ , 

+$"p*" ĝ  E q p * s  

so that f and ĝ  are already* standard ordered. In order to compute *s all we kave to 
do is reorder the product f i ,  using the basic commutation relation [4, $1 = i h l ,  until 
it is also standard ordered. This involves calculating [t", 4 r ]  which can be done easily 
by representing 4 by x and p^ by -ih dldx, and using Leibniz's formula, 

We can invert the standard ordering map and find that 

k = O  
(2 .16)  

where f = n-'(]) = q"p" and g = CL-'(g^) = qrps.  Now the bilinearity of the product 
means that this result generalises to all f and g which can be expanded as power series 
in p and q. Then (2 .16)  becomes 

k = O  

The corresponding Moyal bracket is 

( 2 . 1 7 ~ )  

(2.17 b )  

This simple procedure can clearly also be applied to other correspondence rules, 
yielding, for example the following: 

antistandard 

( 2 . 1 8 ~ )  
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normal 

(2.18b) 

( 2 . 1 9 ~ )  

antinormal 

(2.20u) 

There are some natural generalisations of these formulae. 

space is R2", for example for symmetric ordering, 
(i)  It is straightforward to generalise these formulae to the case when the phase 

where summation (from 1 to n )  over repeated aj is understood. 

operators satisfy anticommutation relations 

[b", b'"], = 6"" 

(ii) We can also consider the fermionic case, where the creation and annihilation 

(characteristic of a Clifford algebra) rather than the commutation relations 

[U " ,  U + " ]  = 6"" 

(characteristic of the Heisenberg algebra). Then, for example, the Moyal bracket for 
normal ordering of fermionic creation and annihilation operators is (for f and g even 
elements of the classical Grassmann algebra) 
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where { , };B is the generalised Poisson bracket for a Grassmann phase space (Casal- 
buoni 1976). 

(ii) We also comment here that equations (2.19) and (2.20) for the normal and 
antinormal orderings are particularly relevant to coherent state path integrals (Faddeev 
1976, Klauder and Skagerstam 1985), where the normal (respectively antinormal) 
symbol of a commutator is not simply the Poisson bracket of the two normal (respec- 
tively antinormal) symbols, but has corrections given by (2.19b) (respectively (2.20b)). 
Coherent state path integrals provide a good example of a formulation in which 
particular operator orderings (namely normal and antinormal) are especially con- 
venient. 

(iv) These formulae can also be extended to the case of quantising a classical 
Hamiltonian field theory. This can be achieved by considering :he system to be in a 
(large) spatial box, so that we have a countably infinite number of modes. Alternatively, 
one can consider all classical functions to be (spatially) smeared with arbitrary smearing 
functions so that the generalisation of the Moyal formulae to Hamiltonian field theory 
consists of replacing all partial derivatives with functional derivatives (the smearing 
being introduced as a means of handling the spatial delta functions). For example, 
defining 

F ( u )  = d3xf(x)u(x) J 
~ ( v )  J d3yg(y)v(y) 

then 

+.. . .  
S 2 F  > 6'G - 

Sz(x)Sz( y ) 6z*( x)Sz*(y ) 

Such a generalised formula, for the case of normal ordering of anticommuting phase 
space variables, is required for the Moyal calculation of the chiral anomaly as an 
anomalous commutafor (Bakas et a1 1988). 

(v) These methods suggest various ways of approaching the problem of quantising 
classical systems with more complicated phase spaces than R2 or R'". The associativity 
of the generalised Moyal product requires w in equation (2.11) to satisfy a 2-cocycle 
condition (Bakas and Kakas 1987a), which suggests that for non-trivial phase space 
systems we could follow the procedure of Isham (1984) and look for general 2-cocycles 
in the canonical group action. Another very different approach is to look for deforma- 
tions of the general Poisson bracket (2.1) on the curved space (Bayen et a1 1978). 

However, for our purposes here the main point of the Moyal structure is that even 
for simple flat phase spaces (bosonic and Grassmann) it provides a simple quasiclassical 
formalism in which to analyse the deformation of the classical Poisson bracket algebra 
(and hence the classical canonical invariance) under quantisation. 
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3. Canonical transformations in quantum theories 

Having introduced the idea of Moyal quantisation, we now give a brief review of the 
various manifestations of the loss of canonical invariance during quantisation. This 
is most familiar in the conventional operator formulation of the quantum theory. 
Consider a classical system with (globally defined) phase space coordinates p and q, 
and a given correspondence rule 0 mapping these to the basic self-adjoint operators 
p̂  and 4 of the quantum system. Now consider making an infinitesimal canonical 
transformation, generated by G( p ,  q ) ,  in, the classical system, and the infinitesimal 
canonical transformation generated by G($, 4) (where 6 = Cl( GI) in the quantum 
system: 

Classical Quantum 

But now, by (2.2), 

fi({G,.fI) # (1 / ih) [6 ,11  

Wf’( P’, 4’)) + pl(p̂ ’, 4’) 
in general, which means that 

i.e. the following diagram is non-commutative, 

classical quantum 

n 
w PI 4 p̂ , 8 

quantum 
canonical 
transformation 

G=:n(G) - - - -  -+- - -  - - -  

n * 6 ’ 9  8‘ 
lG classical 

canonical 
transformation 

PI, 

Manifestation 1 .  It is incorrect to use the same correspondence rule to relate an 
operator theory and classical theory before and after a (non-linear) canonical transfor- 
mation. 

This can be seen very elegantly in the generalised Moyal approach where it is not the 
Poisson bracket, but the Moyal bracket, which is directly related to the quantum 
commutator by the mapping 0. This Moyal bracket, together with the corresponding 
Moyal product, can be used to define a pseudomechanics which reduces to classical 
mechanics in the limit h + 0. This pseudomechanics has a non-commutative product 
and has its dynamics defined by the Moyal bracket: 

A P ,  q ) = { { ~ , f l I a .  
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It does not possess canonical invariance as only the first term of the Moyal bracket 
(i.e. the usual Poisson bracket) is a symplectic invariant. Thus, for h > 0 we have a 
classical representation of the loss of canonical invariance in the corresponding quan- 
tum operator theory. 

Manifestation 2. In the Moyal approach, where one is committed to a chosen correspon- 
dence rule, the dynamics is governed by the Moyal bracket {{ ,}}n which is not a 
canonical invariant-only its O( ho)  term, which is the Poisson bracket, is canonically 
invariant. 

The equivalence of this to manifestation 1 follows from the fact that the O ( h )  and 
higher terms arise from the operator reorderings necessary to impose the defining 
relation (2 .3) .  

To discuss the loss of canonical invariance in phase space path integrals it is 
necessary to establish the equivalence between operator correspondence rules and path 
integral discretisations. This has been studied in great detail in the literature (for an 
excellent discussion see Langouche et a1 (1982)) ,  so I will only state the important 
results here. If the phase space path integral 

is 'defined'/constructed (following Katz (1965))  using the short-time propagators 

(qk+ltk+l I qktk)=(qk+l lexp[(-is/fi)fii"lqk) (3 .1)  

= [ dPk+l/2exp{(i/h)[pk+,,,(qk+,-qk)-&hn(Pk+l/2, qk+l ,  qk) ] }  (3 .2)  

then the ambiguity in the discretisation (i.e. the exact dependence of hn on both qk 
and qk+])  cor!esponds precisely to the ambiguity in ordering the non-commuting 
operators in H n .  This follows trivially from the fact that getting from ( 3 . 1 )  to (3 .2)  
involves inserting momentum resolutions of the identity at appropriate points inside 
A". Note that there is no such ambiguity for Hamiltonians of the form $ p 2 +  V ( q ) .  
In particular, for phase space path integrals, we have the following correspondences: 

midpoint discretisation - Weyi ordering 
fi = W(H(P, 4 ) )  hW(p ,  qk+l, q k ) = H [ p ,  ( q k + l f q k ) / 2 ]  

standard ordering postpoint discretisation - fi = S ( H ( P ,  4 ) )  h S ( p ,  qk+l, q k )  = H ( p ,  qk+l) 

antistandard ordering prepoint discretisation - fi = AS(H(p, 4 ) )  h A S ( p ,  qk+l, qk) = H ( p ,  qk). 

It is a simple matter to verify that these correspondences hold. Given these correspon- 
dences, we immediately arrive at the following. 

Manifestation 3. It is incorrect to make a formal (non-linear) canonical transformation 
within a phase space path integral while retaining the same discretisation rule before 
and after the transformation. The equivalence of this to manifestations 1 and 2 follows 
directly from the equivalence between discretisations and operator ordering rules. 
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This is a reflection of the fact that path integrals are not Riemann-Lebesgue integrals 
but stochastic integrals. The earliest warning against making formal non-linear transfor- 
mations within a path integral came in a beautiful paper by Edwards and Gulyaev 
(1964), in which they showed that a formal change of variables from Cartesian to polar 
coordinates in the configuration space path integral for the two-dimensional free 
non-relativistic particle leads to the wrong answer. They showed that, within the path 
integral, one must respect the appropriate stochastic calculus (e.g., for the It6 calculus, 
(Ax(  ?))’- O ( A ? ) ;  a result familiar from the theory of Brownian motion (Arthurs 1975)) 
rather than the conventional rules of differential calculus. Gervais and Jevicki (1976) 
used this result of Edwards and Gulyaev to show that it is possible to make a point 
canonical transformation in the midpoint discretised form of the path integral provided 
one keeps all terms to O ( ( A Q ) “ )  (since ( A Q ) ‘ / A t - A t ) .  The key point was that the 
original Hamiltonian 

H =f 2 p f +  V ( q )  
i = l  

(3.3) 

In this notation 

a = l  

and rj, are the Christoffel symbols corresponding to g!, and its inverse g’. The presence 
of these ‘additional potential terms’ signals the breaking of canonical invariance. It 
is clear that the precise form of AV will depend on the particular ordering/discretisation 
chosen. We will show in the next section how this additional potential term, as well 
as the additional potential terms corresponding to other discretisations, may be calcu- 
lated in a simple manner using the generalised Moyal product. 

It was also claimed by Gervais and Jevicki (1976) that performing the formal 
transformation (3.5) in the phase space path integral gave a perturbatively different 
theory. However, this claim must be re-evaluated in the light of the fourth manifestation 
of the loss of canonical invariance under quantisation, namely canonical invariame 
in non-linear perturbation expansions. Making the transformation (3.5) formally, the 
Hamiltonian (3.3) becomes 

H’=Sg”Q)P,P, + V ( F ( Q ) )  
the kinetic part of which is of the form of the kinetic part of the Hamiltonian for a 
particle in a curved background with metric g , ( Q ) .  Now a time-splitting ambiguity 
arises in the perturbation expansion for such a non-linear quantum theory. Using 
Schwinger’s method of sources (Schwinger 1951), we write the generating functional as 

where J and K are sources coupled to Q and P, respectively, 2, is the free generating 
functional, and Hint is 
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Now to make the perturbation expansion one must choose some time-splitting rule CL 
to avoid the problems of functionally differentiating at the same time argument. But 
if Hint involves terms containing both P and Q factors then we will get different answers 
in our perturbation expansion depending on our choice of ordering for the time-splitting 
of the action of 6/6K and 6/6J. This ambiguity corresponds precisely to the ambiguity 
in the operator ordering in Hint and to the ambiguity in the phase space path integral 
discretisation, as can be seen from the fact that 

( P ” ( t ) ~ ” , ( t ) )  - 1’ im- 
6 6 6 6 

,+0+6J(t)  SJ(t  + E )  ’ ’ ’ 6 J ( t  + mE) 6K( t + ( m  + 1 ) ~ )  ’ ’ ’  

6 
6K ( t + ( n  + m ) E )  

X In ZO[J, KlIJ=K=O. 

Once this choice is made, instead of (3.6) we have 

where H 2 t  is understood to have been written as a sum of multiplicative terms in 
which the action of the 6 /6J( t )  and G / S K ( t ’ )  has been time split in a well defined 
manner. 

Then Hzt = Hint+ AHn, and the AHa represents the ‘corrections’ to the formal 
classical expression for Hint due to the choice of the particular time-splitting rule CL. 
Such perturbation expansions have been treated in the context of non-linear quantum 
theories in some classic papers by Leschke et a1 (1978) and Langouche et a1 (1979), 
who find that in the perturbation expansion arising from (3.6) there are 

(i) new CL-dependent vertices from the correction term, and 
(ii) 0-dependent equal-time contractions appearing in closed loops 

and that while individual Feynman diagrams are CL dependent, to any given order in 
h the sum of all diagrams is independent of the choice of 0. Thus we have the following. 

Manifestation 4.  It is incorrect to make a formal (non-linear) point canonical transfor- 
mation within a path integral while retaining the same perturbative expansion and 
Feynman rules. The equivalence of this to the above-mentioned manifestations follows 
easily from the equivalence of the time splitting of the functional derivative operators 
6 /6K( t )  and 6/6J(t’)  to a choice of ordering for the non-commuting Q and P factors 
in Hint(Q, PI* 

Applying these results to the problem of making a point canonical transformation in 
a path integral, we see that one can in fact make such a transformation, provided one 
realises that the resulting theory will (in general) be non-linear and so will require a 
new choice of perturbation expansion. Indeed, in the case of Weyl ordering (which 
we recall corresponds to a midpoint discretised path integral), Leschke et a1 found an 
additional two-loop contribution 

i h2 (  F”)’ 

which matches exactly the ‘discrepancy’ found by Gervais and Jevicki (in the case 
with phase space = R’). 

Thus, a more precise way to state the initial claim made by Gervais and Jevicki in 
§ 2 of their 1976 paper is that the original quantum theory is changed by the retention 
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of the initial perturbation expansion after the formal canonical transformation, rather 
than by the formal transformation itself. A careful examination of the generating 
functional (3.6) shows that it is, in fact, impossible to retain the initial perturbation 
expansion. Proceeding as suggested by the lead-up to ‘manifestation 4’ of this section, 
we see that the transformed theory is not perturbatively different (i.e. to any given 
order, the contributions agree), although it does require a new perturbation expansion. 

4. Moyal calculation of ‘additional potential terms’ 

In this last section we use the Moyal methods discussed earlier to calculate the 
‘additional potential terms’ resulting from a non-linear point canonical transformation, 
for three common quantum phase space orderings: Weyl, standard and antistandard. 
This method is more general than the discretised path integral calculation in the sense 
that we do not need to assume a particular Taylor expansion for the potentials or the 
transformation functions. After making a point canonical transformation of the form 
in (3.3) and (3.5), the kinetic part of the Hamiltonian becomes 

H = tg ” ( Q )  P, ( t )  $ ( t). (4.1) 

In the operator quantum theory, the kinetic term should be written in its Hermitian form 

as this corresponds to the covariant Laplace operator in the curved configuration space 
with metric g, (De Witt 1952). Now consider the Moyal R deformation of the classical 
theory with Hamiltonian (4.1). In the Moyal formulation, the classical phase space 
functions do not change their character (i.e. they do not become operators), but the 
ordinary classical product operation does change its character and becomes the non- 
commutative quasiclassical *, product. So we must decide on an ordering of the 
(classical!) functions appearing in H. In analogy to (4.2) we choose 

H” ;g( Q)- ’ /4  *, P, *, g”( Q )  *, g( Q ) ” 2  *, $ *, g( Q)-”4. (4.3) 

Then we have by construction that 

A = n( H Q )  

H” = ig”( Q)P,p,  + O( A ) .  

and that 

(4.4) 

In the limit A + 0, the Moyal product *, reduces to the ordinary product of functions 
so H n  reduces to (4.1). 

These O( A )  ‘quantum corrections’ in (4.4) are just the additional potential terms 
found in the operator formalism by re-ordering the Hamiltonian (4.2) into R-ordered 
form, in the discretised path integral by retaining stochastic terms throughout the 
transformation, and in the non-linear perturbative approach by choosing a time-splitting 

in g”(s/sJ(t))K,(t)K,(t). We see here that these extra terms may be calculated 
using formulae (2.16a)-(2.20~), which simply involves differentiating and multiplying 
ordinary classical functions. 
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For the cases when R is Weyl, standard and antistandard ordering (corresponding 
to midpoint, prepoint and postpoint discretisation in the path integral respectively), 
the quantum corrections to the classical Hamiltonian are 

A H  = Ah ’( F”)’/ ( F’)4 

A H S  = ifiPF”/ ( F‘)3  + ih2[2F’”/ ( F’)3  - 5(  F”)’/ ( F’)4] 

A H  = -i hPF”/ ( F ’ ) 3  + ih’[ 2F”‘/ ( F’)3  - 5(  F”)’/ F’)4] 

where for simplicity of writing the formulae we have considered a two-dimensional 
phase space and where ’ means d/dQ. 

Now notice that if we specialise to the case considered by Leschke et a1 (1978) 
and Gervais and Jevicki (1976), where F ( Q )  is expanded in a Taylor series about 
Q = 0 with F’(0) = 1, then the above formulae become 
A H W = L  2 

A H  = i AP[ F”( 0) - 3 Q( F”( 0 )  )* + QF“’( O ) ]  + i h ’[ - 5 ( F”( 0))’ + 2F”’( O)] 

A H  

These agree precisely with the results of Leschke et a1 (1978). 

sh (F“(O))* 

= -i hP[ F”( 0) - 3 Q ( F”( 0) )* + QF“‘ (0) ] + $h ’[ - 5 ( F”( 0))’ + 2F”’( 0 ) ]  . 

5. Conclusion and discussion 

In this short paper, we have introduced the notion of Moyal quantisation to the very 
general problem of quantum canonical invariance. This somewhat unfamiliar formula- 
tion of the quantum phase space theory is seen to be particularly well suited to 
discussing the deformation of the classical Poisson bracket algebra after quantisation. 
In the generalised Moyal theory the dynamics is described by c-number phase space 
functions together with a non-commutative product and a Lie product given by the 
Moyal bracket {{  , }}n. In the classical limit h + 0, this product *R reduces to the usual 
commutative product of functions, and the bracket {{  , }}n reduces to the usual Poisson 
bracket { , }pB. But for h > 0, only the lowest order (in h )  term of the Moyal bracket 
is invariant under canonical transformations (except for the trivial linear canonical 
transformations which leave the whole Moyal bracket invariant). The ‘failure’ of 
classical point canonical invariance is signalled by the appearance in the formally 
transformed Hamiltonian of ‘additional potential terms’ which are purely quantum 
effects. Given the equivalence with other quantum phase space formulations discussed 
in § 3, we see that in any such theory a general non-linear canonical transformation 
must not be made purely formally, but must be accompanied by an ‘appropriate’ 
quantum correction, the form of this correction being determined by the particular 
formulation. 

The repercussions of this loss of classical canonical invariance go far beyond the 
loss of the convenient classical device of making canonical transformations to simplify 
a given problem. We see that the process of quantisation deforms the whole canonical 
structure of classical mechanics and classical field theory. In the Hamiltonian formula- 
tion of classical theories the time evolution, symmetries and constraints are all described 
in terms of the Poisson bracket Lie algebra structure on phase space (Dirac 1967). 
Even the subtleties involved in the Hamiltonian description of a relativistic theory can 
be handled within a (generalised) Poisson bracket framework if we extend our notion 
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of phase space to include Grassmann variables (see, e.g., Henneaux 1985). But in the 
standard Hamiltonian (often called ‘canonical’) quantisation procedure we are tied to 
a particular operator ordering-normal ordering-because of the Fock space formula- 
tion on which conventional quantum theory is based. Given this commitment to a 
specific correspondence rule, it is clear from the straightforward discussion in this 
paper that, after quantisation according to the normal ordering rule, general Poisson 
bracket relations will not map exactly to the corresponding operator commutation 
relations but will be deformed to some extent. Moreover, using equation (3.19b), the 
Moyal formulation provides a simple way of calculating the deformation of a given 
Poisson bracket relation. 

There are two cases of particular interest in quantum field theory. Firstly, given a 
set of first-class classical constraints pa with (closed) Poisson bracket Lie algebra 

after quantisation we expect (if the cpu are non-linear) the corresponding quantum Lie 
algebra (with Lie product now the normal-ordered Moyal bracket) to be deformed: 

so that the quantum Lie algebra is no longer closed. This deformation term corresponds 
precisely to the ‘anomalous commutators’ in the quantum Lie algebra found by other 
quantum methods. Bakas and Kakas (1987b) have applied the Moyal methods to the 
Virasoro constraint algebra in the bosonic string theory to calculate the Schwinger 
term in the quantum commutation relations of the normal-ordered Virasoro generators 
L,. A second case of special interest is that of classical currents which, being bilinear 
in the basic ‘canonical’ field variables, will have their classical Poisson bracket relations 
deformed by the normal ordering quantisation procedure. Further work along these 
lines will be presented elsewhere (Bakas et al 1988). 
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